MA2

 series

Product Segments

- Industrial Motion

TiMOTION's MA2T series electric linear actuator was specifically designed to endure harsh working conditions. The MA2T is an ideal solution for agricultural, industrial and commercial applications.

Embedded with an intelligent TiMOTION driver board, the MA2T can be easily integrated with different control interfaces without the need of an external control box, reducing the complexity of control and facilitating smarter operation.

The MA2T is available in three T-Smart alternatives:

1) T-Smart Advanced

The T-Smart Advanced alternative allows for synchronization of up to 8 actuators, as well as accurate position feedback through a variety of options (Hall, Hall-Pot., PWM).

2) T-Smart SAE J1939

This alternative provides seamless integration with CAN bus SAE J1939 interfaces, the standardized communication protocol commonly implemented in off-road vehicles and other industrial applications.

3) T-Smart Modbus

Modbus is a serial communication protocol predominantly used in industrial automation and process control. The T-Smart Modbus alternative can be smoothly incorporated into existing industrial systems.

All T-Smart alternatives are compatible with TiMOTION's software program PGMA, providing the user autonomy to adjust parameters such as speed, stroke limits, soft stop, soft start, and more. In addition, the PGMA provides real-time status monitoring, and gathers a comprehensive set of usage and performance data.

General Features

Max. load
Max. speed at max. load
Max. speed at no load
Retracted length
IP rating
Stroke
Output Signals
Voltage
Operational temperature range
Operational temperature range

8,000N (push); 4,000N (pull)
$5.5 \mathrm{~mm} / \mathrm{s}$
$52.5 \mathrm{~mm} / \mathrm{s}$
\geq Stroke +131 mm
IP69K
25~1000mm
Hall sensors
12 / 24 V DC
$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$

Drawing

Standard Dimensions

(mm)

Load and Speed

CODE	Load (N)		Self Lock (N) Duty Cycle Motor Brake		Typical Current (A)		Typical Speed (mm/s)	
	Push	Pull			No Load 24V DC	With Load 24V DC	No Load 24V DC	With Load 24V DC
Motor Speed (5200RPM)								
F	1000	1000	1300	25\%	2.7	6.8	52.5	44.2
G	2000	2000	2600	25\%	2.4	6.7	25.5	21.8
H	4000	4000	5200	25\%	2.3	6.9	13.2	11.0
J	6000	4000	8000	25\%	2.0	5.8	6.6	5.8
K	8000	4000	8000	15\%	2.0	6.9	6.6	5.5

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested with 24 V DC motor under ambient temperature $20^{\circ} \mathrm{C}$. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC. With a 36 V DC motor, the current is approximately two-thirds the current measured in 24 V DC. Speed will be similar for all the voltages.

4 The current \& speed in table are tested when the actuator is extending under push load.
5 The current \& speed in table and diagram are tested with a stable 24 V DC power supply.
6 With load, noise level $\leq 78 \mathrm{dBA}$ (by TiMOTION test standard, ambient noise level $\leq 36 \mathrm{dBA}$)
7 Standard stroke: Min. $\geq 25 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
F	≤ 1000	1000
G	≤ 2000	800
H, J	≤ 6000	600
K	≤ 8000	200

Performance Data (24V DC Motor)

Motor Speed (5200RPM)

Speed vs. Load

Current vs. Load

MA2T

Hardware System $\quad \mathrm{T}=$ Standard driver board

$\square \square$
Stroke (mm) See page 2

Retracted Length (mm)	See page 5	
Rear Attachment (mm) See page 5	$1=$ Aluminum, U clevis, slot 8.2, depth 12.5, hole 10.2 2 = Aluminum, U clevis, slot 8.2, depth 15.0, hole 10.2	3 = Aluminum, U clevis, slot 8.2, depth 15.0, hole 12.8 4 = Aluminum, U clevis, slot 8.2, depth 15.0, hole 12.2
Front Attachment (mm) See page 6	$1=$ Steel inner tube with punched hole, slotless, hole 10.2 $2=$ Steel inner tube with punched hole, slotless, hole 12.2 $3=$ Steel inner tube with punched hole, slotless, hole 12.8	4 = Aluminum, U clevis, slot 8.2, depth 15.0, hole 10.2 $5=$ Aluminum, U clevis, slot 8.2, depth 15.0, hole 12.2 $6=$ Aluminum, U clevis, slot 8.2, depth 15.0, hole 12.8 $\mathrm{K}=$ Rod end bearing, hole 12.8
Installation Direction (CounterClockwise)	$1=0^{\circ} \quad 3=90^{\circ}$	

See page 6

Functions for Limit Switches	$\mathrm{T}=$ Two limit switches send signal at end of stroke to T-Smart (T-Smart dedicated option)
Adjustable Reed Switch	$0=$ Without
Position Feedback	T = Hall sensor*2 for T-Smart (T-Smart dedicated option)
IP Rating	$2=$ IP54 3 = P666 (static) $6=$ \|P66 (dynamic) $8=$ \|P69K
Output Cable See page 7	$3=3$ sockets with extension cable \quad T = Direct cable out, $1+1$ type
P1 Connector See page 6	1 = Tinned leads
P1 Cable Length (mm)	$1000=1000$ 2000 $=2000$
P2 Connector See page 6	1 = Tinned leads $\quad P=$ Dummy plug
P2 Cable Length (mm)	$0000=$ Without $\quad 1000=1000$ 2000 2000
P3 Connector See page 6	$0=$ Without $\quad 1=$ Tinned leads
P3 Cable Length (mm)	$0000=$ Without $\quad 1000=1000$ 2000 $=2000$
Bus Interface	$\mathrm{C}=$ CAN bus

Retracted Length (mm)

1. Calculate $A+B=Y$
2. Retracted length needs to \geq Stroke $+Y$

A.			B.	
Front Attach.	Rear Attach.		Stroke (mm)	Load \& Speed Type (N) F, G, H, J, K
	1	2,3,4		
1,2,3	+131	+134	25~150	-
4, 5, 6	+161	+164	151~200	-
K	+178	+181	201~250	+10
			251~300	+20
			301~350	+30
			351~400	+40
			401~450	+50
			451~500	+60
			501~550	+70
			551~600	+80
			601~650	+90
			651~700	+100
			701~750	+110
			751~800	+120
			801~850	+130
			851~900	+140
			901~950	+150
			951~1000	+160

Rear Attachment (mm)

$1=$ Aluminum, U clevis, slot 8.2, depth 12.5 , hole 10.2

2 = Aluminum, U clevis, slot 8.2, depth 15.0, hole 10.2

3 = Aluminum, U clevis, slot 8.2, depth 15.0, hole 12.8

4 = Aluminum, U clevis, slot 8.2, depth 15.0, hole 12.2

Front Attachment (mm)

1 = Steel inner tube with punched hole, slotless, hole 10.2

2 = Steel inner tube with punched hole, slotless, hole 12.2

$6=$ Aluminum, U clevis, slot 8.2 , depth 15.0, hole 12.8
©

3 = Steel inner tube with punched hole, slotless, hole 12.8

$K=$ Rod end bearing, hole 12.8

4 = Aluminum, U clevis, slot 8.2, depth 15.0, hole 10.2

5 = Aluminum, U clevis, slot 8.2, depth 15.0, hole 12.2

Installation Direction (Counter-Clockwise)

$1=0^{\circ}$
$3=90^{\circ}$

Connector

Wiring Definition

DC Vrsion With T-Smart

Port Number	Wire Color	Wire Gauge (AWG)	Position Feedback
P1	RD	14	VDC +
	- BK	14	VDC-
P2	RD	20	UART-+5V DC
	OW	20	UART-TX
	- BU	20	UART-RX
	- BK	20	UART-GND
	- BN	20	reed input 1
	GY	20	reed input 2
P3	- BN	20	Ctrl EXT
	GY	20	Ctrl RET
	OG	20	EOS-extended
	YE	20	EOS-retracted
	OW	20	S1/POT/CAN+
	BU	20	S2/PWM/CAN-
	RD	20	VDC +
	- BK	20	Common

* The signal wires depend on the chosen options.

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

